9763 measured reflections

 $R_{\rm int} = 0.091$

3561 independent reflections

1506 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

12-(4-Methoxyphenyl)-9,10-dihydrobenzo[b][4,7]phenanthrolin-11(7H,8H,12H)-one

Xiaojing Zhang,^a* Dianxiang Zhou,^b Shujiang Tu,^b Qingqing Shao^b and Chunmei Li^b

^aYunhe High Normal School, Xuzhou 221300, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China Correspondence e-mail: laotu2001@263.net

Received 27 September 2007; accepted 2 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.074; wR factor = 0.179; data-to-parameter ratio = 14.6.

In the molecule of the title compound, $C_{23}H_{20}N_2O_2$, the dihydropyridine ring has a boat conformation, while the cyclohexene ring adopts an envelope conformation. In the crystal structure there are intermolecular $N-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Hall *et al.* (1977); Cassady & Floss (1977); Jastrzebska-Glapa *et al.* (1979). For bond-length data, see: Allen *et al.* (1987). For ring-conformation puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.982, T_{max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.074$	6 restraints
$wR(F^2) = 0.179$	H-atom parameters constrained
S = 0.90	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
3561 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
244 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N1-H1\cdots O1^i$ 0.86 1.99 2.842 (4)
 170

Symmetry code: (i) x, y - 1, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*; molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK 2006033) and the Six Kinds of Professional Elite Foundation of Jiangsu Province (grant No. 06-A-039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2333).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Cassady, J. M. & Floss, H. G. (1977). Lloydia, 40, 90-106.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Hall, C. M., Wright, J. B., Johnson, H. G. & Taylor, A. J. (1977). J. Med. Chem. 20, 1337–1343.

Jastrzebska-Glapa, M., Mlochowski, J. & Sliwa, W. (1979). Pol. J. Chem. 53, 811–820.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4245 [doi:10.1107/S1600536807048246]

12-(4-Methoxyphenyl)-9,10-dihydrobenzo[b][4,7]phenanthrolin-11(7H,8H,12H)-one

X. Zhang, D. Zhou, S. Tu, Q. Shao and C. Li

Comment

Compounds with the 4,7-phenanthroline motif, analogs of ergot alkaloids, possess high and versatile pharmacological effects, such as serotonin antagonism, vasoconstriction, oxytocic and psychotropic activities (Hall *et al.*, 1977). And they are also used as inhibitors of the pituitary hormone prolactin (Cassady & Floss, 1977) and fungicides (Jastrzebska-Glapa *et al.*, 1979). We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987).

Rings A (C1—C6) and B (N1/C1/C6—C8/C13) are not planar, having total puckering amplitudes, Q_T, of 0.442 (2) and 0.218 (2) Å, respectively [φ = 121.08 (7)°, θ = 59.96 (5)° and φ = -7.63 (6)°, θ = 105.09 (5)°, respectively] (Cremer & Pople, 1975). Ring B has a boat conformation, while ring A adopts an envelope conformation with atom C3 displaced by 0.611 (3) Å from the plane of the other ring atoms. Rings C (C8—C13), D (N2/C9/C10/C14—C16) and E (C17—C22) are, of course, planar and the dihedral angles between them are C/D = 2.48 (3)°, C/E = 81.78 (2)° and D/E = 82.14 (2)°.

In the crystal structure, intermolecular N—H…O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Experimental

The title compound, (I), was prepared by the reaction of 4-methoxybenzaldehyde (136 mg, 1 mmol), 6-aminoquinaldine (114 mg, 1 mmol) with 1,3-cyclohexanedione (112 mg, 1 mmol) in water (2 ml) at 393 K under microwave irradiation (maximum power 250 W, initial power 200 W) for 6 min (yield; 339 mg, 95%, m.p. > 573 K). Single crystals suitable for X-ray analysis were obtained from an ethanol solution (95%) by slow evaporation.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 (for NH) and C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram of (I).

12-(4-Methoxyphenyl)-9,10-dihydrobenzo[b][4,7]phenanthrolin-11(7H,8H,12H)-one

Crystal data	
$C_{23}H_{20}N_2O_2$	$F_{000} = 1504$
$M_r = 356.41$	$D_{\rm x} = 1.162 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/c	Melting point: > 573 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 25.072 (3) Å	Cell parameters from 1054 reflections
b = 7.3183 (16) Å	$\theta = 3.1 - 25.0^{\circ}$
c = 23.335 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 107.922 \ (2)^{\circ}$	T = 298 (2) K
$V = 4073.9 (11) \text{ Å}^3$	Block, yellow
<i>Z</i> = 8	$0.25\times0.22\times0.17~mm$
Data collection	
Bruker CCD area-detector diffractometer	3561 independent reflections

unnacionicici	
Radiation source: fine-focus sealed tube	1506 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.091$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -27 \rightarrow 29$
$T_{\min} = 0.982, \ T_{\max} = 0.987$	$k = -6 \rightarrow 8$
9763 measured reflections	<i>l</i> = −27→27

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.074$	H-atom parameters constrained
$wR(F^2) = 0.179$	$w = 1/[\sigma^2(F_o^2) + (0.0682P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.90	$(\Delta/\sigma)_{\rm max} < 0.001$
3561 reflections	$\Delta \rho_{\text{max}} = 0.18 \text{ e } \text{\AA}^{-3}$
244 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.25058 (12)	0.2112 (4)	0.12759 (13)	0.0527 (8)
H1	0.2592	0.1025	0.1196	0.063*
N2	0.12094 (15)	0.2715 (6)	0.27923 (16)	0.0776 (11)
01	0.26478 (10)	0.8398 (4)	0.09987 (12)	0.0660 (8)
O2	0.00632 (15)	0.7318 (7)	-0.06119 (19)	0.1331 (16)
C1	0.27071 (14)	0.3551 (5)	0.10386 (16)	0.0473 (9)
C2	0.31553 (15)	0.3166 (6)	0.07644 (17)	0.0587 (11)
H2A	0.3072	0.2023	0.0544	0.070*
H2B	0.3508	0.3016	0.1083	0.070*
C3	0.32208 (18)	0.4638 (6)	0.0345 (2)	0.0752 (13)
H3A	0.2910	0.4590	-0.0025	0.090*
H3B	0.3564	0.4443	0.0245	0.090*
C4	0.32379 (16)	0.6511 (5)	0.06386 (18)	0.0629 (11)
H4A	0.3596	0.6649	0.0949	0.076*
H4B	0.3216	0.7445	0.0337	0.076*
C5	0.27826 (15)	0.6826 (6)	0.09107 (16)	0.0519 (10)
C6	0.25135 (14)	0.5270 (5)	0.10778 (15)	0.0458 (9)

C7	0.20182 (14)	0.5607 (5)	0.13040 (15)	0.0489 (10)
H7	0.2102	0.6688	0.1564	0.059*
C8	0.19323 (14)	0.4004 (5)	0.16820 (15)	0.0456 (9)
C9	0.16183 (14)	0.4200 (5)	0.20860 (15)	0.0484 (10)
C10	0.15200 (16)	0.2680 (6)	0.24086 (17)	0.0579 (11)
C11	0.17668 (16)	0.0988 (6)	0.23468 (17)	0.0614 (11)
H11	0.1712	-0.0021	0.2564	0.074*
C12	0.20816 (15)	0.0827 (6)	0.19748 (17)	0.0558 (10)
H12	0.2243	-0.0294	0.1940	0.067*
C13	0.21689 (14)	0.2323 (5)	0.16396 (15)	0.0458 (9)
C14	0.13782 (15)	0.5875 (6)	0.21876 (17)	0.0631 (11)
H14	0.1423	0.6927	0.1983	0.076*
C15	0.10836 (18)	0.5925 (7)	0.2585 (2)	0.0820 (14)
H15	0.0934	0.7023	0.2666	0.098*
C16	0.1004 (2)	0.4308 (9)	0.2875 (2)	0.0910 (16)
H16	0.0793	0.4372	0.3141	0.109*
C17	0.14855 (15)	0.6003 (6)	0.07851 (17)	0.0549 (10)
C18	0.12516 (18)	0.4690 (7)	0.03605 (18)	0.0704 (13)
H18	0.1413	0.3534	0.0398	0.084*
C19	0.07762 (19)	0.5063 (9)	-0.0126 (2)	0.0852 (15)
H19	0.0624	0.4180	-0.0417	0.102*
C20	0.05397 (19)	0.6772 (10)	-0.0163 (2)	0.0864 (18)
C21	0.07634 (19)	0.8092 (8)	0.0256 (2)	0.0856 (16)
H21	0.0597	0.9239	0.0223	0.103*
C22	0.12300 (17)	0.7715 (6)	0.07178 (19)	0.0683 (12)
H22	0.1385	0.8624	0.0998	0.082*
C23	-0.0179 (3)	0.6087 (10)	-0.1060 (3)	0.142 (2)
H23A	0.0081	0.5787	-0.1274	0.213*
H23B	-0.0511	0.6614	-0.1335	0.213*
H23C	-0.0277	0.4998	-0.0887	0.213*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.070 (2)	0.030 (2)	0.062 (2)	0.0002 (15)	0.0266 (18)	0.0000 (16)
N2	0.093 (3)	0.077 (3)	0.073 (2)	0.007 (2)	0.040 (2)	0.000 (2)
01	0.0811 (19)	0.0320 (18)	0.089 (2)	0.0003 (14)	0.0326 (16)	-0.0026 (16)
O2	0.078 (3)	0.183 (5)	0.118 (3)	-0.016 (2)	0.000 (2)	0.036 (3)
C1	0.048 (2)	0.040 (3)	0.053 (2)	-0.0018 (19)	0.0146 (19)	-0.003 (2)
C2	0.067 (3)	0.045 (3)	0.072 (3)	-0.0010 (19)	0.033 (2)	-0.009 (2)
C3	0.097 (3)	0.056 (3)	0.092 (3)	-0.005 (2)	0.057 (3)	-0.004 (3)
C4	0.080 (3)	0.045 (3)	0.072 (3)	-0.008 (2)	0.034 (2)	-0.001 (2)
C5	0.063 (3)	0.039 (3)	0.058 (2)	0.002 (2)	0.024 (2)	0.000 (2)
C6	0.056 (2)	0.034 (2)	0.053 (2)	-0.0009 (18)	0.0246 (19)	-0.0066 (19)
C7	0.055 (2)	0.038 (2)	0.053 (2)	-0.0003 (18)	0.0152 (19)	-0.0037 (19)
C8	0.044 (2)	0.045 (2)	0.047 (2)	-0.0066 (18)	0.0126 (18)	-0.006 (2)
C9	0.057 (2)	0.045 (3)	0.044 (2)	-0.0070 (19)	0.0175 (19)	-0.003 (2)
C10	0.061 (3)	0.069 (3)	0.046 (2)	-0.003 (2)	0.020 (2)	-0.003 (2)

C11	0.073 (3)	0.053 (3)	0.058 (2)	-0.011 (2)	0.019 (2)	0.009 (2)
C12	0.064 (3)	0.046 (3)	0.059 (2)	-0.0018 (19)	0.021 (2)	0.000 (2)
C13	0.050 (2)	0.044 (3)	0.048 (2)	-0.0054 (18)	0.0223 (19)	-0.002 (2)
C14	0.067 (3)	0.061 (3)	0.068 (3)	0.002 (2)	0.030 (2)	-0.007 (2)
C15	0.098 (4)	0.070 (4)	0.092 (3)	0.010 (3)	0.049 (3)	-0.008 (3)
C16	0.095 (4)	0.107 (5)	0.086 (4)	-0.010 (3)	0.050 (3)	-0.008 (4)
C17	0.051 (2)	0.057 (3)	0.060 (2)	0.001 (2)	0.023 (2)	0.003 (2)
C18	0.070 (3)	0.074 (3)	0.065 (3)	-0.003 (2)	0.017 (2)	-0.005 (3)
C19	0.059 (3)	0.120 (5)	0.069 (3)	-0.017 (3)	0.009 (3)	0.003 (3)
C20	0.037 (3)	0.138 (6)	0.073 (3)	0.000 (3)	0.000 (2)	0.037 (4)
C21	0.050 (3)	0.093 (4)	0.109 (4)	0.008 (3)	0.017 (3)	0.035 (4)
C22	0.049 (3)	0.071 (4)	0.082 (3)	0.009 (2)	0.016 (2)	0.011 (3)
C23	0.128 (5)	0.202 (7)	0.090 (4)	-0.034 (4)	0.026 (4)	0.005 (4)

Geometric parameters (Å, °)

N1—C1	1.357 (4)	C9—C10	1.407 (5)
N1—C13	1.378 (4)	C9—C14	1.418 (5)
N1—H1	0.8600	C10—C11	1.411 (5)
N2—C16	1.313 (6)	C11—C12	1.346 (5)
N2—C10	1.356 (5)	C11—H11	0.9300
O1—C5	1.234 (4)	C12—C13	1.402 (5)
O2—C23	1.373 (6)	C12—H12	0.9300
O2—C20	1.384 (5)	C14—C15	1.352 (5)
C1—C6	1.362 (5)	C14—H14	0.9300
C1—C2	1.481 (5)	C15—C16	1.409 (6)
C2—C3	1.497 (5)	С15—Н15	0.9300
C2—H2A	0.9700	С16—Н16	0.9300
C2—H2B	0.9700	C17—C18	1.375 (5)
C3—C4	1.527 (5)	C17—C22	1.394 (5)
С3—НЗА	0.9700	C18—C19	1.397 (6)
С3—Н3В	0.9700	C18—H18	0.9300
C4—C5	1.485 (5)	C19—C20	1.375 (7)
C4—H4A	0.9700	С19—Н19	0.9300
C4—H4B	0.9700	C20—C21	1.365 (7)
C5—C6	1.437 (5)	C21—C22	1.353 (5)
C6—C7	1.512 (5)	C21—H21	0.9300
С7—С8	1.522 (5)	С22—Н22	0.9300
C7—C17	1.529 (5)	С23—Н23А	0.9600
С7—Н7	0.9800	С23—Н23В	0.9600
C8—C13	1.383 (5)	С23—Н23С	0.9600
C8—C9	1.409 (5)		
C1—N1—C13	122.7 (3)	N2—C10—C9	124.7 (4)
C1—N1—H1	118.7	C11—C10—C9	119.0 (4)
C13—N1—H1	118.7	C12-C11-C10	120.4 (4)
C16—N2—C10	116.5 (4)	C12-C11-H11	119.8
C23—O2—C20	117.7 (6)	C10-C11-H11	119.8
N1—C1—C6	120.3 (3)	C11—C12—C13	121.0 (4)
N1—C1—C2	117.1 (3)	C11—C12—H12	119.5

C(-C1-C2)	122 ((4)	C12 C12 U12	110.5
$C_0 - C_1 - C_2$	122.6 (4)	Cl3—Cl2—Hl2	119.5
C1 = C2 = C3	113.3 (3)	C8-C13-N1	120.1(3)
C1 - C2 - H2A	108.9	C8-C13-C12	120.7 (4)
$C_3 - C_2 - H_2 A$	108.9	NI-CI3-CI2	119.1 (4)
C1 - C2 - H2B	108.9	C15C14C9	119.2 (4)
$C_3 - C_2 - H_2 B$	108.9	C15C14H14	120.4
$H_2A = C_2 = H_2B$	107.7	C9—C14—H14	120.4
C2 - C3 - C4	110.3 (3)	C14—C15—C16	119.7 (5)
С2—С3—НЗА	109.6	С14—С15—Н15	120.2
С4—С3—НЗА	109.6	С16—С15—Н15	120.2
С2—С3—Н3В	109.6	N2-C16-C15	123.7 (5)
С4—С3—Н3В	109.6	N2—C16—H16	118.1
НЗА—СЗ—НЗВ	108.1	C15—C16—H16	118.1
C5—C4—C3	114.3 (3)	C18—C17—C22	117.9 (4)
С5—С4—Н4А	108.7	C18—C17—C7	120.8 (4)
С3—С4—Н4А	108.7	C22—C17—C7	121.3 (4)
C5—C4—H4B	108.7	C17—C18—C19	121.1 (5)
C3—C4—H4B	108.7	C17—C18—H18	119.4
H4A—C4—H4B	107.6	C19—C18—H18	119.4
O1—C5—C6	121.2 (3)	C20-C19-C18	118.2 (5)
O1—C5—C4	120.1 (4)	C20-C19-H19	120.9
C6—C5—C4	118.7 (4)	C18—C19—H19	120.9
C1—C6—C5	120.5 (3)	C19—C20—C21	121.6 (5)
C1—C6—C7	121.5 (3)	C19—C20—O2	124.4 (6)
C5—C6—C7	118.1 (3)	C21—C20—O2	114.0 (6)
C6—C7—C8	110.8 (3)	C22—C21—C20	119.3 (5)
C6—C7—C17	111.4 (3)	C22-C21-H21	120.3
C8—C7—C17	111.1 (3)	C20-C21-H21	120.3
С6—С7—Н7	107.8	C21—C22—C17	121.8 (4)
С8—С7—Н7	107.8	C21—C22—H22	119.1
С17—С7—Н7	107.8	C17—C22—H22	119.1
C13—C8—C9	118.6 (4)	O2—C23—H23A	109.5
C13—C8—C7	120.2 (3)	O2—C23—H23B	109.5
C9—C8—C7	121.2 (3)	H23A—C23—H23B	109.5
C10—C9—C8	120.3 (4)	O2—C23—H23C	109.5
C10-C9-C14	116.2 (4)	H23A—C23—H23C	109.5
C8—C9—C14	123.6 (4)	H23B—C23—H23C	109.5
N2-C10-C11	116.3 (4)		
C13—N1—C1—C6	-10.0 (5)	C14—C9—C10—C11	-177.4 (3)
C13—N1—C1—C2	167.6 (3)	N2-C10-C11-C12	179.9 (3)
N1—C1—C2—C3	161.1 (3)	C9—C10—C11—C12	-1.4 (5)
C6—C1—C2—C3	-21.4(5)	C10-C11-C12-C13	-0.3 (5)
C1—C2—C3—C4	47.6 (4)	C9—C8—C13—N1	-176.2 (3)
C2—C3—C4—C5	-48.7 (5)	C7—C8—C13—N1	3.1 (5)
C3—C4—C5—O1	-158.6 (4)	C9—C8—C13—C12	2.3 (5)
C3—C4—C5—C6	22.6 (5)	C7—C8—C13—C12	-178.5 (3)
N1—C1—C6—C5	170.5 (3)	C1—N1—C13—C8	12.8 (5)
C2—C1—C6—C5	-6.9 (5)	C1—N1—C13—C12	-165.7 (3)
N1—C1—C6—C7	-8.6 (5)	C11—C12—C13—C8	-0.2 (5)
	S /		× /

C2-C1-C6-C7	174.0 (3)	C11—C12—C13—N1	178.3 (3)
O1—C5—C6—C1	-172.8 (3)	C10-C9-C14-C15	1.0 (5)
C4—C5—C6—C1	6.0 (5)	C8—C9—C14—C15	-180.0 (3)
O1—C5—C6—C7	6.4 (5)	C9—C14—C15—C16	-2.1 (6)
C4—C5—C6—C7	-174.8 (3)	C10-N2-C16-C15	0.9 (7)
C1—C6—C7—C8	21.6 (4)	C14—C15—C16—N2	1.2 (7)
C5—C6—C7—C8	-157.6 (3)	C6—C7—C17—C18	64.9 (4)
C1—C6—C7—C17	-102.7 (4)	C8—C7—C17—C18	-59.2 (4)
C5—C6—C7—C17	78.2 (4)	C6—C7—C17—C22	-113.4 (4)
C6—C7—C8—C13	-18.6 (4)	C8—C7—C17—C22	122.5 (4)
C17—C7—C8—C13	105.9 (4)	C22-C17-C18-C19	0.6 (6)
C6—C7—C8—C9	160.6 (3)	C7-C17-C18-C19	-177.8 (3)
C17—C7—C8—C9	-74.9 (4)	C17—C18—C19—C20	-1.4 (6)
C13—C8—C9—C10	-4.0 (5)	C18-C19-C20-C21	1.1 (7)
C7—C8—C9—C10	176.8 (3)	C18—C19—C20—O2	-178.7 (4)
C13—C8—C9—C14	177.0 (3)	C23—O2—C20—C19	-2.0 (7)
C7—C8—C9—C14	-2.2 (5)	C23—O2—C20—C21	178.2 (4)
C16—N2—C10—C11	176.5 (4)	C19—C20—C21—C22	0.1 (7)
C16—N2—C10—C9	-2.1 (6)	O2-C20-C21-C22	179.9 (4)
C8—C9—C10—N2	-177.8 (3)	C20-C21-C22-C17	-1.0 (6)
C14—C9—C10—N2	1.2 (5)	C18-C17-C22-C21	0.6 (6)
C8—C9—C10—C11	3.6 (5)	C7—C17—C22—C21	179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.86	1.99	2.842 (4)	170
Symmetry codes: (i) x , $y-1$, z .				

